If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2+10t-135=0
a = 5; b = 10; c = -135;
Δ = b2-4ac
Δ = 102-4·5·(-135)
Δ = 2800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2800}=\sqrt{400*7}=\sqrt{400}*\sqrt{7}=20\sqrt{7}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-20\sqrt{7}}{2*5}=\frac{-10-20\sqrt{7}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+20\sqrt{7}}{2*5}=\frac{-10+20\sqrt{7}}{10} $
| m2-8m+4=0 | | 0=21-19x-12-39+14x-10 | | 13/4m=42/3 | | 3x+8=-9x-4 | | 9^(6+x)=81 | | 9^6+x=81 | | -30=5(x+1)−30=5(x+1)x= | | 2x-1=7x-5 | | 11-4x=13+6x | | 11x-4x=13+6x | | 5(4x-5)=-x-4 | | -3x-24=3(x-4) | | x²=-6x² | | x+2x+4=31 | | 4(2x+1)-4=-40 | | 3x+23=47 | | 3x+23=47¨ | | x=5+5*10 | | 12+-2n=19 | | 10=8(x+9) | | 16x-(5x-22)=0 | | 11370·〖1,02〗^x=12800·〖1,01〗^x | | -4x+28=60 | | 4x-15=3(2x-1) | | 2(x-4)-4=5x+6 | | Y=35+15x | | 14-x=2+45/9 | | 8x-6=5x+16 | | Y=40+12x | | 2x-3÷5+x+4÷2=x | | 5+6x/5=11 | | 5+6x75=11 |